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Numerical and physical experiments on two-dimensiof2)) turbulence show that the differences of
transverse components of velocity field are well described by Gaussian statistics and Kolmogorov scaling
exponents. In this case the dissipation fluctuations are irrelevant in the limit of small viscosity. In general, one
can assume the existence of a critical space dimensionbdity,, at which the energy flux and all odd-order
moments of velocity difference change sign and the dissipation fluctuations become dynamically unimportant.
At d<d the flow can be described by the “mean-field theory,” leading to the observed Gaussian statistics and
Kolmogorov scaling of transverse velocity differences. It is shown that in the vicinity=ad. the ratio of the
relaxation and translation characteristic times decreases to zero, thus giving rise to a small parameter of the
theory. The expressions for pressure and dissipation contributions to the exact equation for the generating
function of transverse velocity differences are derived in the vicinitylefd,. The resulting equation de-
scribes experimental data on two-dimensional turbulence and demonstrates the onset of intermittency as
—d.>0 andr/L—0 in three-dimensional flows in close agreement with experimental data. In addition, some
exact relations between correlation functions of velocity differences are derived. It is also predicted that the
single-point probability density function of transverse velocity components in developing as well as in the
large-scale stabilized two-dimensional turbulence is a Gaussian.
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[. INTRODUCTION which cannot be obtained on dimensional grounds. This
anomalous scaling and the very existence of the energy flux,
The role of the mean-field theories and Gaussian limits asesulting in the nonzero value of the third-order moment
starting points for understanding such important physical; ;= (Au)®*~O(r), whereu-r=ur, imply a strongly non-
phenomena as superconductivity, superfluidity, critical pointGaussian process and an obvious lack of the mean-field
naming just a few, can hardly be overestimated. These thedimit.
ries, usually based on remarkable physical intuition and in- The situation may not be so grim, however: all odd-order
sight, provided mathematical and intellectual foundations foimoments of transverse velocity differences in both 2D and
investigation of much more difficult regimes in terms of de- 3p flows Sooms1=[v(X+r)—v(x)]*" =0 with v-r=0.
viations from the mean-field solutions. The most recent eX'This fact te'is us that these Components of Ve|ocity differ-
ample is a theory of anomalous scaling in a model of a pasences do not participate in the interscale energy transfer and
sive scalar, advected by a random velocity field, which waghere is noa priori reason for them not to obey Gaussian
developed as an expansion in powers of small parametekgatistics in some limiting cases. This is indeed true in two-
characterizing deviations from the two Gaussian limitsgimensional turbulence in the inverse cascade range where
[1-3]. In a typical nonlinear system, a Gaussian limit corre-| . <r <L andl; is a forcing scale.
sponds to a weak coupling asymptotics and, as a conse- Numerical and physical experiments on external-force-
quence, to a “normal,” nonanomalous, scaling, which cangriven two-dimensional turbulence showed that the moments
often be obtained from a "bare” or linearized problem. A of transverse velocity differences and even-order moments of
good example of this behavior is a fluid in thermodynamicthe |ongitudinal ones are very close to the Gaussian values
equilibrium. and are characterized by the Kolmogorov scaling exponents
The large-Reynolds-number  three-dimensionéD) g . oS, «crén with &,,=2n/3 [4—7]. The odd-order mo-
strong turbulence is characterized by @(1) energy flux  ments of longitudinal velocity differences are positive in a
£=v(dvj)?, which in many flows iO(v}.JL), whereL is 2D fiow, while they all are negative i8A). This observa-
an integral scale of turbulence. In the inertial range, whergjon tells us that the most important distinction between two-
k<kg—o orr/L<1, the observed energy spectrii(k) is  and three-dimensional turbulence is in the dynamic role of
close to the one proposed by Kolmogorov and “the probabilthe dissipation contributions: they are irrelevant in the two-
ity density function of velocity increments’P(Au) with  dimensional inverse cascade range and are crucial for the
Au=u(x+r)—u(x) is far from the Gaussian. Moreover, the small-scale dynamics of a three-dimensional flow where the
experiments revealed a scaling law for the moments of veforcing terms can be neglected. Thus, we can assume that it
locity difference Smoz(Au)“c>crgn with the exponentst, is the dissipation fluctuations that are responsible for both
strong deviations from the Gaussian statistics and anomalous
scaling in three-dimensional flows. This assumption is con-
*On leave from Department of Aerospace and Mechanical Engisistent with the observation of the close-to-Gaussian prob-
neering, Boston University, Boston, MA 02215 ability density of velocity differences in 3D turbulence at the
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scales ~L where the integral scaleis defined as the one at  This paper is organized as follows. In Sec. Il the equation
which S;(L)=0 and the intermittent dissipation fluctua- for the generating function, derived [yil], is introduced.
tions diséppea[S]. It is clear that this ranger L) is not Some exact relations between velocity structure functions,
characterized by well-defined scaling exponents. following from this equation, are derived in Sec. Ill. The
As will become clear below, the forcing contribution to COnnection between scaling exponents of the moments of
the equation for the probability density involves a factor velocity differences and their amplitudes is established in
~1—cosk). This means that at the scales 1/k; the pa- Sec. IV. The mean-field derivation of the pressure term is
rameteru~1 while u~ (k;r)2 whenkr<1. Thus, the forc- given in Sec. V which is used to obtain a Gaussian probabil-
ing term must be important in the inertial range of two- Ity density function(PDF) in the two-dimensional flow in
dimensional turbulencer&1;) and is irrelevant in the 3D S€¢- VI- In Sec. Vil the small parameter of the theory is
inertial range with the positive energy flux. This change hapidentified and used to derive the expression for the dissipa-
pens at some space dimensionality d. at which the en- tion contributions to the equation for the PDF. Section VIII
Cc

ergy flux changes sign. The calculationchf~2.05 was con- is devoted to a solution of the equation and a demonstration

ducted by Frisch and Fouri¢8] within the framework of a of how anomalous scaling and deviations from Gaussian sta-

simple closure model. The more physically transparent caltStics de_mesrge flr)c:m the theory. Conclusive remarks are pre-

culation can be performed for the Navier-Stokes equationS€"ted In Sec. IX.

driven by a random force having an algebraically decaying

spectrum in the inertial randd.0], where a one-loop small- Il. EQUATION FOR THE GENERATING FUNCTION

\s;icszilce);iet;m|nat|on procedure gives a correction to the bare The equations of motion arelensityp=1)

ﬁtvi+vj(9]'l)i:_ﬁip‘FVVZUi"-fi, &iviZO (1)

d’>~d—e

V=Y o d(d+ 2)

R€, wheref is a forcing function responsible for the kinetic en-
ergy production and in a statistically steady state the mean
. ] pumping rateP=f-v. In what follows we will be mainly
where Re is a properly defined Reynolds number corremterested in the probability density function of the two-point
sponding to the eliminated small-scale velocity fluctuations,e|ocity difference U=u(x’)—u(x)=Au. The generating
and e is a parameter characterizing the forcing function. Infynction iszZ=(exp(r-U)). The equation for the generating

case of Kolmogorov turbulence~4. Th|S relation shows ) function of Ve|ocity differences Corresponding to Em) is
that the role the small scales play in turbulence dynamics

depends on the space dimensionatityhe correction to vis- az 9*Z

cosity is positive wherd>d.(e) and it changes sign at St T o ar el tD, @

=d.+. Physically, this means that the small-scale velocity S

fluctuations take energy from the large-scales motidirect ~ with

energy cascade from large-to-small structuras d>d., AL

while at d<<d. they excite the large-scale motiolspend li=(\- Vet 2, ©)

their energy giving rise to the inverse energy cascade. For ' '

e=14 the critical dimensionalityl.~2.56. The correct value '~ —\- (e AUA(Vp))=—N-(eM V[V op(x2) = Vip(x1)])

of d. is not too important: what is crucial for the theory (4)

presented below is that the critical dimensionality, at whichypq

the flux changes its sign, exists. It will be shown below that

d—d.—0 is a small parameter of the theory enabling one to D=u\- <[V§v(x2)—V§v(x1)]e”‘U>. (5)

calculate an expression for the dissipation anomaly in a form

resembling the Kolmogorov refined similarity hypothesis. The most interesting and surprising feature of B).is the
Since in 2D the momentS; », show Kolmogorov scaling, fact that, unlike in the problem of Burgers turbulerde],

the Gaussian statistics of transverse velocity differences carthe advective contributions are represented here in a closed

not correspond to the weak coupling limit. This problem wasform. This means that the theory, developed below, is free

considered in Ref11] where, following Polyakoy12], the  from the troubles related to the Galilean invariance, haunting

equation for the generating function for the problem of theall schemes, based on renormalized perturbation expansions

Navier-Stokes turbulence was introduced. An unusual symin powers of the Reynolds number. To completely close the

metry of this equation enabled one to show that the solutioproblem the expressions fbg andD are needed. Equations

was consistent with both Kolmogorov scaling and Gaussiart2) and (3) formulate the turbulence theory in terms of

statistics. In this work a more detailed theory of two- “only” two unknowns I, and D. The Kolmogorov refined

dimensional turbulence is presented and the generalization gimilarity hypothesis stating that@)3= ¢&,r, where¢ is a

three-dimensional flows is considered. The main result of thecale-independent random process &nds the dissipation

paper is a model demonstrating how the deviations from theate averaged over a ball of radiuaround poini, can be a

“normal scaling” and Gaussian statistics appear in 3D wherpromising starting point to a closure for the dissipation term

the strength of the dissipation term deviates from zero an@®. This will be done below. The pressure term in E@.

the “scale” parameteky,=1—r/L deviate from zero. and(3) is also of a very specific and rather limited nature: all
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we have to know is the correlation functions In a three-dimensional cas@D) the small-scale r(l;
(UjU;---U,AVp). Thus, the definite targets needed for <1) contribution to the right side of Eq7) is O(r?) and
derivation of the closed equation f& functions are well can be neglected. It is, howeved(1) in two-dimensional

defined. turbulence in the inverse cascade range whérg>1. For
The generating function can depend only on three varin=1 Eq.(7) gives a well-known incompressibility relation
ables:7;=r; 7,=\-r/r=X\ cos(); 73=\?— 52; and [13,14
d-1 73 (2—d)n, S0 d-1_ d-1
Z+ &,]10"7]24- Taanr T 7]2(9773 Taﬂs or + r SZ,O_ r S0,2- (8
M2 5 | Multiplying Eq. (6) by 75 with subsequen#;d3 leads, after
— 7 Iug| =i+ 1D, ®)  setting ,= 73=0 asy—0, to
Below we Wlll often used,, =d;. The functlonsl P l¢, and 53'0+ Syo-2 S = (—1)%= P, ©)
D are easily extracted from the above definitions. Let us ar r r d

denoteAu=U andAv=V. In the new variables the gener- 5 .
ating function can be represented as whered=2 and 3. Applyingd37ns to Eq. (6) gives, asv
—0,
Z:<enzAu+ 773AU>E<9772U+773V>
(?81'2+d+18 B 1d4P 10
with the mean dissipation rat& defined by v(dyu)? ar - SLe= (- DT P (10
=(1/d)&. Any correlation function is thus
Substituting this into Eq(9) yields a well-known Kolmog-

Sam=(U"V™ = 3393Z( n,=13=0,). orov relation
Ill. RELATIONS BETWEEN MOMENTS OF VELOCITY S30=(A u)3= (— 1)d Pr. (17
DIFFERENCE d(d+2)
Let us discuss some direct consequences of Bgs(6). ~ For 2n=4 the relation(7) reads
The Navier-Stokes equations are invariant under transforma- s d—1 3(d—1)
tion: v——v andy— —y. That is why([d,p(0)—d,p(r)] 40 Spo= S, 3((Ap(Au)?).

X(Av)™=+#0 if m=2n+1 withn>1 and is equal to zero if or r
m=2n. It is also clear from the symmetry thég,pU?") is

an odd function of. It follows from the Navier-Stokes equa-  This relation is correct in the case of incompressible and
tions that »((V?U)(Au)>")=0 when »—0 and isotropic turbulence whew—0, including the limitr —L

((VAV)V2")=0. The first relation is proved in the following Where velocity fluctuations obey close-to-Gaussian statistics

way: a Sing|e_point correlation function (see below There, SinCQVp)ZO, the pressure contribution
is negligible. In the dissipation range

(Apy(8u)?)=r¥(peu) <r(uy)
due to the symmetry of the problem. Th¢§2u(Au)?")
sr|r|” with 1+ >0, meaning that multiplied by—0, this  Since(p,,)=0. This leads us to the conclusion that the pres-
expression tends to zero. This result is a consequence ofsalre contribution, at least numerically, is small in the inertial
simple observation that the above expression can be repréange, too. This gives
sented as the sum of single-point contributidiesjual to

((V2u)u") =0,

zerg and the functions of with the displacement in the ’934'°+ d-1 s 3(d—-1) s, 12
inertial range. This proves the above relation. ar ro 40 r 2
Multiplying Eq. (6) by 75 and applyingdza3" * to the
resulting equation gives a$z= 73—0 2 In two-dimensional turbulenced&2), where theO(d—2)
contribution to Eq.(6) is zero, one can neglect the dissipa-
ISne d—1 (d—1)(2n—1) tion termD in the inverse cascade range and derive
T T no— % n—-22
dS1m 1+2n Chion-1)p
— —(2n—1)(Apy(Au)2"~2) o T Sia=n(2n- )PS -2
+P[1—cogr/lf)]an 4Sen-30. (7 —2n(P,,(Av)®" 1), (13

wherea, 4=2(2n—1)(2n—2)/d. Due to the symmetry of where Py,=d,p(x+r)—dyp(x). Another interesting rela-
the problem dissipation terms do not contribute to this relation, valid in 2D is obtained from Eq6) by differentiating
tion. once overzn, and 2n times overys,
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IS  1+2n _ Son+2 on-1 IS  1+2n _ Son+2
pr +— = —2n(Py, Au(Av)="" %) pr +— S; = ; —(2n+1)aS; x
+n(2n—=1)PS; x-_». (14) —2n(P,,Au(Av)®"" 1)

+n(2n—1)PS; o>, a7
In the direct cascade range, where the forcing contribution is
0O(r?)—0, the relation14) for an arbitrary dimensionalitd ~ modifying the balancépressure contributiorin the range of

reads the small producAuAv or r/L=1. In the interval where
AuAv is not small ¢—0), the linear terms are small and
P d—1+2n on+d—1 can be_ neglepted. The results obtained in this section can also
S2.m T = Soan+2 be derived with
ar r ' 2n+1 r

_ AVd=1Iy3V+ 9oU
—2n(P,, Au(Av)?"Y). Z=e" s (18)

(15)  with the properly defined moments ®fandU.

We would like to stress the difference between Hd@) and IV. ASYMPTOTIC VALUES OF EXPONENTS

Egs. (14) and (15). The relation(13) is for the odd-order IN THREE-DIMENSIONAL FLOWS

structure functions with the dissipation term irrelevantin 2D |, the case of intermittent turbulenc®, ,=A,, ,r{™"
only. On the other hand, the expressidd) and (19 in-  ;ith the “anomalous” scaling exponents which cannot be
volve even-order moments with the dissipation contributiongpiained on dimensional grounds. We can see that in the
equal to zero when—0 for an arbitrary space dimension- jnertial range of a three-dimensional flow/(;<1) the right

ality. The relations derived in this section are of importancegiqe of Eq.(7) is negligible and, as a result, for>1, &y, o
since they enable one to obtain information about pressure- Eon25=E,n<2n/3. Substituting this into Eq(7) givrzés

velocity correlation functions in turbulent flows by experi- immediately
mentally measuring the combinations of velocity structure
functions. Untill recently this information was unavailable.
Now, let us multiply Eq.(6) by 75, differentiate once §on=(d=1)
over 7, and three times oven;. This gives

Ao
(2n—1) n-22

1. (19

A2n,0

Let us introduce the probability density functioR§U) and

0S5, d+1 d+1 S q(Vv|u) via
r + ; 2= 3y So,4— 2Py, Aulv. (16)

Spno=U2"= f P(U)U2"dU (20)

This relation is correct sinceVZvAuAv=rV2u(Av)?=0
when v—0.

2D simulations of Boffetta, Celani, and Vergassol®
achieve a true steady state these auth@lsconducted a SZ”*Z?:UZWZVZ:J’ P(U)UZ"2v2q(V|U)dUdV,
series of very accurate simulations of the problgnwith 21)
the large-scale dissipation terby = — av in the right side

(6). The moments of transverse velocity diffgrences,'reporteq,hereq(wU) is the conditional PDF o¥ for a fixed value
in this paper (=2), were very close to their Gaussian val- ot y |t is clear thatq(V|U)=q(-V,U), so that all odd-

ues. Itis clear that this term introduceswh ,(9Z/d) ) int0 order moments of are equal to zero. This expression can be
the right side of Eq(6) which is small in the inertial range g\ritten as

where the nonlinearity is large. One has to be careful though,

with the dangerous intervaélv —0 where the linear term is -

not small. We expect that the negative-order structure func- Son-2.2= Uzszz:f P(U)UP"72Q,(U)dU, (22
tions with —1<n<0 strongly depend on the functional

shape of the otherwise irrelevant large-scale dissipation termvhereQ, is a conditional expectation value Wt for a fixed
The same can be predicted for various conditional expectaralue ofU,

tion values of dynamical variables, like pressure gradients

and dissipation terms, for the fixed valueshafAu: near the 5

origin whereAv and Au are very small, the artificially in- Qz(U):f Veq(VIU)dV. (23
troduced linear contributions to the Navier-Stokes equations

dominates, producing large and nonuniversal deviations fronit follows from Eq.(19) that the linear limit,,<n(n—=) is
the universal functions characterizing inertial range. For exachieved only when the amplitudés,, o~ A,,_,, which is
ample, with the addition of the linear dissipation, relationpossible only ifQ,oU?. This seems rather improbable in the
(14) reads limit U—o(n—«). As a result, the linear regim&,«n is

and
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equally improbable. Saturation of exponents,— ¢,  terminvolves only one spacial derivative, the ultraviolet sin-

=const asn— is possible on a rather wide class of prob- gularity cannot appear. The infrared singularity is not there

ability densities. For example, at least in 2D where the integral scale is time depen(s=d
below). Keeping only the first two terms of the expansion

19 (28) produces a model for the pressure contributions
P(U)—~AG 55 P(V)QaAU) (24) P P
AVA hAuAv Av
whereA>0 is a constant. Then, {ayp(x+1)—dyp(x)|AyAv)~— r b(Pr)Z’S'
(29)
— 2n—-2
SZn,O_(ZH_l)Af P(U)Qz(U)U""“dU Since in an incompressible and homogeneous flowP,
=AvP,,=0, the coefficienth andb are related as
=(2n=1)AS-22. (25) Y
~hS,,=bS AP, (30

Substituting this result into the expression #y, gives &,
—(d—1)(A—1)=const. The relation(24) defines the Limiting the expansion of a conditional expectation value by

largeU asymptotics of the PDIP(U) in terms ofQx(U), the first terms resembles Landau’s theory of critical phenom-
ena, well describing experimental data in a certain range of

(U)= 1 ex;{ _AJU udu ) (26) parameters variation. We will show below that in the case of

Q2(U) Qo(u) turbulence this approximation gives the results which are in

) ) agreement with the data. This may be a consequence of the
If Q,(U)— U¥ then, assuming the existence of all moments act thatAg 7~Aj ~A, ,=0(1).
it follows from Eq. (25) that B<2. The “log-normal” PDF  \yjith ¢,=n/3 it follows from Egs.(7), (13—(15), and (29)
P(U) corresponds tdQ,(U)xU?/2log(U). The expression that whend=2 andn— o,
(24) also gives in the limit of large

2n(4-3h) S;on 2nS o
SZn+1,0:U2n+1:Znszuzn_lzznASanl,Z' (27) 3 +1 r :n(2n—1)PSO,2n_2+ng
V. PRESSURE CONTRIBUTIONS and

Due to the symmetries of the Navier-Stokes equations, [2n(4—3h) Soon Somi+2
neither pressure nor dissipation terms contributed to the ex- 3 +1 r T
pressiong7)—(12). To proceed further we have to evaluate

+n(2n_ 1)PS_|.,2'1*2

|, andD. First of all we see from E(12) that&, o= &, . Let 2nS; x
us assume that in the inertial ran@® o=Asd %49 Spq +b(pr)?7§-

=Ag %04 and S,,=A, x22 Then, it is clear from Egs.
(12) and(16) that neglecting the pressure contribution to Eq.In the limit n—, by assuming tha8; »,~nS; »,_,, one

(16) gives &, o=E&p 4. derives readily

d=2. It will be shown in Sec. VI that in 2D the even-
order moments of velocity differences are very close to the P Sz 1 31
Gaussian ones and all exponents are close ti#tevalues MB2-2~ "By~ prnz a4, (3Y)

£n=n/3. Then,A, o= 3A3 , andAq 4= 3A3 . It follows from
Eq. (12) that A, ,=7/9A, . From Eq.(18) whend=2 we which is consistent with the Gaussian PP{Av) as Av
have the amplitudes 583 o= A, we conclude that without —. Thus, the relatiori29) implies the Gaussian tails of the
the pressure contribution, Eq&2) and (16) are incompat-  probability density. It is clear that due to the finite energy
ible. flux and relationg10) and(11), two-dimensional turbulence
Following [15] we introduce a conditional expectation cannot be a Gaussian process. All the relatgi) can tell us
value of the pressure gradient difference for a fixed value ofs that the even-order moments witk>1, described by Eq.
Au, Av, andr, (31), can be close to the Gaussian values. It will be shown
below that transverse velocity differences, not directly in-
volved in the interscale energy transfer, can obey Gaussian
<‘9yp(x"'r)_’9y|o(x)|Au*Av'r>%%1 Kkmn(M(AWT(A0)Y,  gatistics. It is clear from Eq17) that the mode(29) for the
’ (28) pressure contributions is wrong when the linear dissipation
terms are added to the Navier-Stokes equations. In the limit
where the functiong, ,(r) ensure proper dimensionality of of small AuAv the balance is achieved when
the corresponding correlation functions. The above expres-
sion explicitly assumes the existence of an expansion of the AuAv
conditional expectation valug@8). In general, this may not (PylAu,Av,r)~=h
be true due to various singularities such as the ones arising in
the dissipation contributionsee below. Since the pressure which differs from Eq.(29) in the range of smalAuAwv.

Av,

a+ _ZG(PI’)
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Three dimensionalln the intermittent three-dimensional Substituting Eqs(32) and(29) into Eq.(6) and, based on
turbulenceé,,<&,,, 1. This produces strong restrictions on Egs.(9)—(11), seeking a solution ag,—0 as
the structure of the pressure contributions to ). Let us
assume that,, o= &2 2= Ean_22. Then, it is clear from Z(m2,m3,1)~Z3(n3,1) @(72r
Eq. (15 that the first term of expansio(28) has all right L -
properties. The relatiofl5), involving ther derivatives, is ~Z3(n3.r)exd z A2 72PT7)7]
valid for an arbitrary value oh and that is why any addi- 3
tional term of expansior{28) must not only depend on a X| 1+ 1AL m3na(Pr)+ ﬂ+... ,
proper power oh but the functionsc, ,(r) must also reflect 4
nontrivial dimensionalities caused by the anomalous scaling (33
exponents, . Since original Navier-Stokes equations do not
involve noninteger powers aof, this possibility seems quite  where @, ,=1/2), gives
bizzarre. In what follows we will adopt the pressure model

(29) in the three-dimensional case also. 1 1-h
O')r + F + r 7’]3(93

1/3, 73)

AgPr b3
> 75Z3=2P 1325+ L] d3Z3.

VI. TWO-DIMENSIONAL TURBULENCE (34)

Now we are interested in the case of the two-dimensionaBettingZs;=Z5(74r Y3 =Z5(X) andh=4/3 one derives, us-
turbulence in the inverse cascade range. If a two-dimensionahg the relation(30) (b= —2/3A, ),
(2D) fluid is stirred by a randonfor nonrandom forcing
acting on a scalé;= 1/, the produced energy is spent on 2A0 X Z3=dxZ3,
the creation of the large-scaléXl;) flow which cannot be ) . . . )
dissipated in the limit of a large Reynolds numberas 0. correspc_mdlng to a Gaussian sc_)lutlon with the correct width
This is a direct and most important consequence of an addfo2: This fact serves as a consistency check that the Gauss-
tional, entrophy conservation law, characteristic of two-1@n is @ solution for the PDF of transverse velocity differ-
dimensional hydrodynamid4.6]. As a result, the dissipation €nces. Equatiori34) defines a probability density function
term is irrelevant in the inverse cascade range and we s&€Prresponding to the finite momerty, »,(r) only whenh
D=0 in Eq.(6) and hope that in two dimensions the situa- =4/3. This situation resembles Pplyakov’s theory of Bgrgers
tion is greatly simplified. This hope is supported by recenturbulence[12] reduced to an eigenvalue problem with a
numerical and physical experimerié—7] showing that as §|ngle e|g_env_alue corresponding to the PDF which is positive
long as the integral scale;=t¥2 is much smaller than the 1IN the entire interval. o
size of the system, the velocity field at the scalgs|>1; is Having these exact results and keeping in mind &¢)
a stationary close-to-Gaussian process characterized by tQ8€ can integrate the equation ovgs from —ix to 0 to
structure functions with the Kolmogorov exponengs —~ °btain
=n/3. In a recent paper Boffetta, Celani, and VergasfEbla

reported the results of very accurate numerical simulations of ‘9_23 Chem B ‘9_23 = _I_ZP 2
two-dimensional turbulence generated by a random force. ar +3(1-h-b) r dns (Pr)lsnsz3 (39
No deviations from Gaussian statistics of transverse velocity
differences as well as from the Kolmogorov scaligg ~ Which valid as long as
=n/3 were detected. 132

The pressure gradient,p=d,d;d;0” *Av;Av; and the (75r™) <1
difficulty in calculatingl, is in the integral over the entire 8A§’o '

space defined by the inverse Laplaciar?. The huge sim-

plification, valid in 2D, comes from the fact that all contri- This constraint is an artifact of an approximate relatigg).
butions to the left side of Eq6) as well asl; are indepen- As will be shown below Eq(35) gives an exact Gaussian
dent on time. This means that the integrals involved in thesolution and thus is valid beyond the above interval. This
pressure terms cannot be infrared divergent since in a twgesult is obtained by choosing the integration function
dimensional flow L=L(t)«t¥2 We also have thai, ¥(7s,r) to compensate th®(Z/r) term violating the nor-
—a?l p whenU,V—aU;aV. Based on this and taking into malizability constrainZ(0,0y)= 1. The solution to Eq(35)
account that(Av)?" X(uZ+v2+u,v,))=0 we, in the limit  is

7,—0, adopt a low-order modéR9) giving

Zz=exd yn5(P1)*7 (36)
32 _ -
l,=|h +b 7732/3(93 Z(7,=0,m3,r). (32  with the parametery=3[3(1-h—-b)+1]xA,, defining
dmadns — (Pr) the width of the Gaussian.

The first-order differential equatio(85) for the generat-
In two dimensions the relatiof82) combined with Eq(6) in ing function differences implies the underlying linear Lange-
the limit ,—0 gives a closed equation for the moments ofvin dynamics of transverse velocity differences. It is impor-
transverse velocity differences in 2D turbulence. tant that this equation in nonlocal in physical space but local

026307-6



MEAN-FIELD APPROXIMATION AND A SMALL ... PHYSICAL REVIEW E 63 026307

in the Fourier one. The effective forcing, corresponding to k—d
the right-side of Eq(35), is nonlocal and solution dependent.  vi(K,w)vj(k",@")x e d(k+k)o(w+w’),

To evaluate the single-point probability density that cor-
responds to velocity differences in the limit of large displace—WhiCh is accurate whed—d_—0 [10] (see below

: . c A
mentsr, we notice th‘.'ﬂ the energy flux is not equal to zero In the physical space the effective viscosity of the coarse-
only atr<L. At the distances=L(t) the zero value of the : :
. - ..grained field

energy flux and symmetrization of the probability density
[P(Au,L)=P(—Au,L)] can be achieved only when the
pressure contribution to Eq6) compensates the advective
terms. As a result, sinc®=0, we have

Vr%(d_dc)1/3N(gr4)1/3%vr21_r

defines the relaxation time , which is a characteristic time
Z,=2P2Z. of interaction of the fieldy, with the eliminated modes act-
ing on the scales<r.
Seeking a solution aZ=Z(73\t)=Z[ 73v,ms(t)] gives a The difficulty of the theory is in the higher nonlinearities
Gaussian result -
- (v, V)" oy,
Z:e”3urms(t)_
and the dimensionless expansion parameter
A similar outcome is obtained for the case investigated in
[7]. When turbulence is stabilized at the large scales by an I U,

artificially introduced friction, the resulting equation is ?~Vrv,7}~
r

13052 =2P 32,
is nothing but the ratio of the relaxation time, strongly
which also leads to the Gaussian PDF. To conclude this se@fluenced by the pressure gradients contributions, to the
tion we would like to discuss the physical meaning of thetranslational time#,, characterizing the tendency of the
integral scald_. The integral scale of turbulence is a scale at“large-scale” longitudinal velocity fluctuation at the scale
which the flux decreases to zefd8] and at whichS; (L)  to form a small-scale “shock’(atypical in the absence of
=0. pressurg In both 2D and 3D these times are of the same
order and that is why trancation of the expansion is a very
difficult problem.
VIl. SMALL PARAMETER IN TURBULENCE THEORY This is not so in the vicinity ofl=d. . Let us assume that
IN THREE DIMENSIONS the theory can be analytically continued to the noninteger

dimensiong 9]. Then, since the energy flux, prescribed by
Three-dimensional turbulence is a notoriously difficult the power of the forcinP=0(1), we have

problem due to the absence of the small parameter. This can
be illustrated by the example of a coarse-graining procedure, 9 <( ri>2>
0(1)

which was extremely successful in engineering turbulence S~—<Au(Av)2>~—<(Au)3>~v
simulations. Consider the wave numblkrin the inertial
range. Let us denote~(q) the Fourier components of the
velocity field with all modesv=(q)=0 when g>k. The
modesv(q) with g>k are denoted as~(q). The coarse-
grained field in the physical space is defined then as

j
This means that

Ur rms™ (d—d¢)™ 1/6(5”1/31

_ the dissipation wave numb&g~ (d—d.)¥4(&/v3)Y* and, as
Vr(X:t):J v(k)e™*d3k. a consequence,
k<1/r

. . < . . 1~ d—d )1/2
The equation of motion fov; (k) in the Fourier space re- 9, ( ¢
sembles the Navier-Stokes equation with effective viscosity
(10,17 which will serve as a small parameter of the theory whien

—d.—0+.
(d—d.)(d+13) s These relations tell us that the turbulent intensity grows to
v(k)~ T32(dt2) Wy~ infinity asd—d.— 0 where the energy flux changes its sign.
' The time needed to reach the steady state is estimated easily,

with d.~2.56 plus high-order nonlinearities. The parameter T~(d—dg) e~ 1%283

3.2 in the above relation, evaluateddst 3, is in fact a weak

function of space dimensionality add=P=0(1). This ex-  after which a close-to-Kolmogorov spectrum is expected
pression is derived assuming close-to-Gaussian statistics bbth above and belowl.. Thus, atd=d. the the flow is
the small-scale turbulence with unsteady.
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The above results enable one to derive a plausable estiwpothesis, connecting the dissipation rate, averaged over a
mate for the dissipation term. It is clear from the Navier- region of radiug, with (Au)®. Thus, in the limitz,—0

Stokes equations that )

2 73
g:_%ﬁiviviz_%atvz_aivip- 8771(97/2+F&712+(1+h)7¢9 d
72773
The coarsed-grained expression in the low-frequency limit is
+c(d) 73d,,d,.0¢ | Z(12=0,7m3,1)
19
—_ 2 _
E~ 2(Qriv,,vrj[1+0(d do)]. (37

2 2 2P 73
=(n3+ np) 5 [1-coskin)]Z—b 7pdsZ. (39)
To arrive at an expression f@ we assume ,~Av, which
leads to an expression very similar to Kolmogorov's refined  Thed—d.>0 counterpart of Eq(35) is
similarity hypothesis.

73 d
VIll. THREE-DIMENSIONAL FLOW Iy T (LHNHD) =20 4 0(d) n3d,,0r | 2(72=0,775,1)
The most important feature of two-dimensional turbu- 2P 1—cogksr)
lence, considered in a previous section, is the irrelevance of =a—3 —— 13— 73Z2(0,7m3,1), (40

the dissipation processes in the inverse cascade range when

d<d. It is this irrelevance that was responsible for theith w(4,) chosen in such a way that the generating func-
Gaussian probability density of transverse velocity differ-tion 7(0,0y)=1. We consider two limiting cases.

ences.

The model for the dissipation contributidn in the limit
7n,—0 is readily evaluated from Eq37). We would like to _ _
keep at least some information abaut and the expression  Inverse Laplace transform of E¢40) without the right
must be invariant under the transformation» —v andx—  Side gives an equation for the P Av,r)=P(V,r),

—X. In addition, the expression must be local in the physical

Small-scale dynamics

: : dP 1438 9 Jd dP
space. Based on these considerations we have el T yp_p vy
ar - 3r aVVP 'B&VV ar 0. (4D
dAv
&~c(d)Audv ——, whereB=c(d). SinceS, ;= 0, the coefficients in Eq41) are

chosen to givesy 3= |Av|3=asPr with an undetermined am-

where&, is a dissipation rate of they* contribution to ki-  Plitude as. This is an assumption of the present theory, not
netic energy” K,=(1/2)v2. The locality of this model is pasgd on rigorous theoretical conS|dgrat|ons. Seeking a solu-
clear sinced, Av=a,v(x,) + d,0(x,). The problem is in the tion in the formSy,=((Av)")>=rn gives
evaluation of the coefficient(d) since, in principle, it can
be singular atl=d.. Indeed, it is clear that the dissipation — 1+38 N~ 115 n (42)
term is zero atl<d.. However, the pointd=d, that sepa- " 3(1+Bn) 3(1+0.0:) "
rates the inverse and direct cascade ranges is a singularity ) ) ]
due to infinitely large amplitudes of velocity fluctuations. All Which was derived 18] together with3~0.05. It follows
we can say at this point is that the PDF can be represented M Eq. (41) that P(Or)er™*, where k= (1+38)/3(1
a sum of even and odd functions &f. The symmetric part —/8)~0.4 for 3=0.05. Very often the experimental data are
has a width growing wittd—d.— 0+, while the width of ~ Presented a®(X,r), whereX=V/r# with 2= £,~0.696
the odd one i©(1). Thebehavior ofc(d) in the vicinity of ~ for B=0.05. This givesP(X=0,)or~**#~r~%%2 com-
d. is not clear. We feel that it i©(1) atd>d, and zero at Pared with the experimental data by Sreeniva8i: — «
d=<d,.. Thus, we have +p~—0.06.

Let us write P(V,r)=r"“F(V/r*;r)=r"“F(Y,r), so
that F obeys the following equation:

~ ( ) 3 727 M3 r %C(d)ne‘ AUAU—e 2 7380V

This expression obeys the basic symmetries of the Navier- Next, changing the variables again to<y=Ln(Y)

Stokes equation. <o, substituting this into Eq(43), and evaluating the Fou-
The last term in the right-hand side of E@®8) simply  rier transform of the resulting equation, gives

modifies the coefficient in front of the first term in the left- I I

hand side of Eq(6) and does not generate anything new. The B or T N o _

expression(38) resembles Kolmogorov’s refined similarity (=B ar +Br(ik=kHF ~ikpr ar 0 (44
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g this is the first work leading to the multifractal distribution of
velocity differences as a result of approximations made di-
rectly on the Navier-Stokes equations.

To investigate the probability densig(Y,r) in the limit
Y—0 we introduce an expansion

Ln(PE,r)

F(Y,r) =2 C Y2, (r). (48)

-30

Substituting this into Eq(44) gives

r\ ~B«2n(2n-1)/[1-B(1+n)]
1:ZnOC ( E)

It is seen from Eqs48) and(49) that the PDF starts bending
from the log-normal slopd&47) toward dvF(Y,r)=0 atyY
=0 at

(49
FIG. 1. Ln[P(£,r)]. From bottom to top: r/L=0.1, 0.01, and
0.001, respectively.

with the result Focr Y™ where y(k)= B«[(—ik+k?)/(1
—B—iBk)ILn(r/L) with r/L<1. We have to evaluate the
inverse Fourier transform

r\Bl(1-28)
) (50

v<({
* . L
F= f dk e kye? (45)

- This inequality shows that as—0 the PDF develops a nar-
in the limit y=0(1) andr—0 so thatLn(r/L)— —c. The OW cusp at the originy=0. If the probability density is
integral can be calculated exactly. However, the resultmg?('oned in the dimensionless variab the bending starts at

07 . .
expression is very involved. Expanding the denominator o Nros- This value was calculated, as above, with
ﬁK[Ln(r)]” Large-scale limit: r/L=1

v(k) gives =
f dkexp{ —ik 1=
B Now let us investigate the large-scale limit. — 1. Real-
B.(1+B)|Ln(r)] izing that 8 can be anO(1) constant, for illustration pur-
F{ k ) (46) poses we will investigate the large-scale limit pretending that
(1-8) B(d)—0 asd—d;. This is also useful since the estimated
value of 3~0.05 atd=3 is numerically small. In this limit

y+

and the right-hand side of Eq41) is O(%3Z) and cannot be
[Ln(g)] neglected. Repeating the procedure leads to an equation
(47) 2
e P 143 L0 PP FZ
ot Ta WP R Yo TR e
with  &=V/r/G=A)  and  Q(r)=4B8«[(1+B)/(1 (51)

=B)JILn(r/L)|.

To understand the range of validity of this expression, lewherea s a proportionality coefficient and~L. As one can
us evaluate(V") using the expressio47) for the PDF. see from this equation in the limit of sma8lthe solution to
Simple integration and neglectin@(B?) contributions this equation approaches Gaussian. It is also clear that for
gives: (V") ecr ®n with a,=(1+38)[n— B(n?+2)]/3. Com-  any finite 3, the tails of the PDF are strongly non-Gaussian
paring this relation with the exact resy#2) we conclude when
that the expression for the PDF, calculated above, is valid in
the rangen>1 andgBn<1. The properties of the PDF in the BY?>1. (52
range 3<¢<15 are demonstrated in Fig. 1 for/L
=0.1,0.01,0.001. The log-normal distributi¢fi7) is valid in ~ This estimate means that, according to the theory presented
a certain(wide but limited range of theV variation. It is  above, the perturbative treatment of deviations from the
clear from Eg.(42) that neglecting the dissipation terms mean-field Gaussian theory is possible but it involves two
[c(d—d.)xB=0] leads to&,=n/3, i.e., the disappearance parameters: the ratie;=1—r/L<1 andB<1. The fact that
of anomalous scaling of moments of velocity differences.the “real-life” B~1/20 may explain why the experimentally
This result agrees with the well-developed phenomenologypbserved PDF of the large-scale<€1) velocity fluctuations
attributing intermittency to the dissipation rate fluctuations:was so close to the Gaussi@®e[8] and references thergin
the stronger the fluctuations, the smaller the fraction of thet is also seen from Eq(52) that at ¢/L)?>~3~0.05 the
total space they occug$,14]. To the best of our knowledge, PDF is dominated by a Gaussian central part.

026307-9



VICTOR YAKHOT PHYSICAL REVIEW E 63 026307

The calculation also gave the Kolmogorov energy spectrum
IX. CONCLUSIONS at “d>d.” with a growing Kolmogorov constant asl
—d.. Itis not yet clear how the eddy viscosity approxima-
tion works for the shell model, but, since t¥1) energy
flux is fixed by the forcing function, the growth of kinetic
nergy must be related to a relaxation time-0 atd=d,.

Equation(6) formulates the theory of turbulence in terms
of “only” two unknowns: pressure and dissipation terms
and D, respectively. It provides a mathematical testing

round for various analytic expressions and models obtaine . .
g Y P nd a corresponding small parameter. This result also shows

from numerical simulations. . ) )
that the phenomenon is very robust: all one needs is a point

oﬁtirnmegaVL:”stQia;[;]estzgspt?gsmoefnttraalni\r/]grsneu\Te?(r)lgi? : gﬁ;geitg t which the energy cascade changes its direction. The results
porting y f the shell model investigation will be published elsewhere

in two-dimensional flows, we showed that the mean-field[21]
approximatior{the lowest-order term of the expansi(#)] Expression(47) is similar to the one obtained in a ground-

At e 1280 paper b Pobakoy on the sale varance o song
ences. In addition, Eq) shows that the single-point PDF’s interactions, where the multifractal scaling and the PDF were

in 2D turbulence are Gaussian. It is to be stressed that 2 nalytically derived22,23. In the review papef23] Polya-

turbulence cannot be a Gaussian process and probability de@gv noticed that the exact result can be simply reproduced by
sity P(Au,Av,r)=is not a Gaussian. It is only the PDF onsidering a cascade process with a heavy stiganticle

- T . . transformed into lighter streams at each step of the cascade
P(Av,r)=JP(Au,Av,r)dAu which is a Gaussian. This fission. Due to the relativistic effects the higher the energy
statement violates no dynamic constraints. If this is so, the

o . f the particle, the smaller the angle of a cone, accessible to
transverse velocity differences are a good candidate to S€N\fie fragments formed as a result of fission. Thus, the larger
as an “order parameter” of turbulence theory. '

; . he number of a cascade step, the smaller is the fraction of
One of the most interesting outcomes of the presen b

. i > . pace occupied by the particlgz3].
theory is the discovery of the existence of the two time scales N : .
in the system which are very different in the vicinity df The theory presented in this paper describes many experi

—d. This diff bl t in the Navi mental observations. Still, an understanding of the limits of
— dc. This difference enables one to coarse grain the a‘.".er\'/alidity of expression(29) is crucial for the final assessment
Stokes equations and neglect ‘."‘” h|gh—order nonlmeanueaf the theory. Relatiori32) shows that Eq(29) is consistent
generated by the procedure. Using this result the model fo\}'\/ith the Gaussian tails of the PDF. However, at the present

for the dissipation tern was d_enyed. . o stage we are unable to prove that E2p) is the only expres-
The as yet unresolved ar.n.blgwty of this model IS Its be'sion leading to this result. The problem is that without ex-
ha_1V|or asd—d.. If the transition from 3D to the noninter- perimental detection of at least some deviations from the
mittent state al<d, is smooth, therB—0 and the resulting 5 ,sqjan statistics of transverse velocity differences, one
equation shows the onset of both anomalous scaling and NONiil not be able to understand the limits of validity of Eq.

Qa#ssian statisrt:cs. Thf(;:' transition can be singular, howevefyq) Giyen the state-of-the-art of numerical simulations, this
right at d>d. the coefficientg can becomeO(1) and a goal may not be that simple.

weakly intermittent state and weak coupling limit do not
exist. In this case, due to the existence of the small param-
eter, enabling the evaluation of the dissipation expresBion
the theory nonperturbatively predicts both the shape of the
PDF and scaling exponents provided the small parameter
83’0/(82’0)3/2—>0 asd—d.. This result is possible sinde | am grateful to A. Polyakov for the most interesting and
=Dy+0O(d—d;) avd even in the limitd—d;, the model stimulating discussions. Help from K. R. Sreenivasan and M.
D=0(1). Atd—d.<0,D=0, leading to the Gaussian PDF Vergassola, who shared with me their sometimes unpub-
of transverse velocity differences. Experimental and numerilished experimental data, was most useful. The recent nu-
cal investigation of hydrodynamics in a noninteger space dimerical results of M. Jensen produced not only support for
mension is impossible. However, it was demonstrated byhe conclusions of this paper but also demonstrated a surpris-
Jenserj20] that a force-driven shell model yields the chang-ing power and importance of a shell model. The recent deri-
ing sign of the energy flux upon variation of a leading pa-vation by R. Hill of some of the relations of Sec. lll, using a
rameter. The numerical solution at a critical pdip¢ro fluy  totally different method, was most illuminatiri@4]. | also
demonstrated an unsteady state with the growing total enerdyenefited from conversations with B. Shraiman, P. Constan-
and the energy spectrum concentrated in the vicinitk;of  tin, C. Doering, T. Gotoh, and T. Kambe.
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