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Mean-field approximation and a small parameter in turbulence theory
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Numerical and physical experiments on two-dimensional~2D! turbulence show that the differences of
transverse components of velocity field are well described by Gaussian statistics and Kolmogorov scaling
exponents. In this case the dissipation fluctuations are irrelevant in the limit of small viscosity. In general, one
can assume the existence of a critical space dimensionalityd5dc , at which the energy flux and all odd-order
moments of velocity difference change sign and the dissipation fluctuations become dynamically unimportant.
At d,dc the flow can be described by the ‘‘mean-field theory,’’ leading to the observed Gaussian statistics and
Kolmogorov scaling of transverse velocity differences. It is shown that in the vicinity ofd5dc the ratio of the
relaxation and translation characteristic times decreases to zero, thus giving rise to a small parameter of the
theory. The expressions for pressure and dissipation contributions to the exact equation for the generating
function of transverse velocity differences are derived in the vicinity ofd5dc . The resulting equation de-
scribes experimental data on two-dimensional turbulence and demonstrates the onset of intermittency asd
2dc.0 andr /L→0 in three-dimensional flows in close agreement with experimental data. In addition, some
exact relations between correlation functions of velocity differences are derived. It is also predicted that the
single-point probability density function of transverse velocity components in developing as well as in the
large-scale stabilized two-dimensional turbulence is a Gaussian.

DOI: 10.1103/PhysRevE.63.026307 PACS number~s!: 47.27.Ak
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I. INTRODUCTION

The role of the mean-field theories and Gaussian limits
starting points for understanding such important phys
phenomena as superconductivity, superfluidity, critical po
naming just a few, can hardly be overestimated. These th
ries, usually based on remarkable physical intuition and
sight, provided mathematical and intellectual foundations
investigation of much more difficult regimes in terms of d
viations from the mean-field solutions. The most recent
ample is a theory of anomalous scaling in a model of a p
sive scalar, advected by a random velocity field, which w
developed as an expansion in powers of small parame
characterizing deviations from the two Gaussian lim
@1–3#. In a typical nonlinear system, a Gaussian limit cor
sponds to a weak coupling asymptotics and, as a co
quence, to a ‘‘normal,’’ nonanomalous, scaling, which c
often be obtained from a ‘‘bare’’ or linearized problem.
good example of this behavior is a fluid in thermodynam
equilibrium.

The large-Reynolds-number three-dimensional~3D!
strong turbulence is characterized by anO(1) energy flux
E5n(] iv j )

2, which in many flows isO(v rms
3 /L), whereL is

an integral scale of turbulence. In the inertial range, wh
k!kd→` or r /L!1, the observed energy spectrumE(k) is
close to the one proposed by Kolmogorov and ‘‘the proba
ity density function of velocity increments’’P(Du) with
Du5u(x1r )2u(x) is far from the Gaussian. Moreover, th
experiments revealed a scaling law for the moments of
locity difference Sn,05(Du)n}r jn with the exponentsjn
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which cannot be obtained on dimensional grounds. T
anomalous scaling and the very existence of the energy fl
resulting in the nonzero value of the third-order mome
S3,05(Du)3'O(r ), whereu•r5ur, imply a strongly non-
Gaussian process and an obvious lack of the mean-
limit.

The situation may not be so grim, however: all odd-ord
moments of transverse velocity differences in both 2D a
3D flows S0,2n115@v(x1r )2v(x)#2n1150 with v•r50.
This fact tells us that these components of velocity diff
ences do not participate in the interscale energy transfer
there is noa priori reason for them not to obey Gaussia
statistics in some limiting cases. This is indeed true in tw
dimensional turbulence in the inverse cascade range w
l f!r !L and l f is a forcing scale.

Numerical and physical experiments on external-for
driven two-dimensional turbulence showed that the mome
of transverse velocity differences and even-order moment
the longitudinal ones are very close to the Gaussian va
and are characterized by the Kolmogorov scaling expone
S0,2n}S2n,0}r j2n with j2n52n/3 @4–7#. The odd-order mo-
ments of longitudinal velocity differences are positive in
2D flow, while they all are negative in~3A!. This observa-
tion tells us that the most important distinction between tw
and three-dimensional turbulence is in the dynamic role
the dissipation contributions: they are irrelevant in the tw
dimensional inverse cascade range and are crucial for
small-scale dynamics of a three-dimensional flow where
forcing terms can be neglected. Thus, we can assume th
is the dissipation fluctuations that are responsible for b
strong deviations from the Gaussian statistics and anoma
scaling in three-dimensional flows. This assumption is c
sistent with the observation of the close-to-Gaussian pr
ability density of velocity differences in 3D turbulence at th
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scalesr'L where the integral scaleL is defined as the one a
which S3,0(L)50 and the intermittent dissipation fluctua
tions disappear@8#. It is clear that this range (r'L) is not
characterized by well-defined scaling exponents.

As will become clear below, the forcing contribution
the equation for the probability density involves a factorm
'12cos(kfr). This means that at the scalesr @1/kf the pa-
rameterm'1 while m'(kfr )2 whenkfr !1. Thus, the forc-
ing term must be important in the inertial range of tw
dimensional turbulence (r @ l f) and is irrelevant in the 3D
inertial range with the positive energy flux. This change h
pens at some space dimensionalityd5dc at which the en-
ergy flux changes sign. The calculation ofdc'2.05 was con-
ducted by Frisch and Fourier@9# within the framework of a
simple closure model. The more physically transparent
culation can be performed for the Navier-Stokes equati
driven by a random force having an algebraically decay
spectrum in the inertial range@10#, where a one-loop small
scale-elimination procedure gives a correction to the b
viscosity,

dn5n
d22d2e

2d~d12!
Re2,

where Re is a properly defined Reynolds number co
sponding to the eliminated small-scale velocity fluctuatio
and e is a parameter characterizing the forcing function.
case of Kolmogorov turbulencee'4. This relation shows
that the role the small scales play in turbulence dynam
depends on the space dimensionalityd: the correction to vis-
cosity is positive whend.dc(e) and it changes sign atd
5dc1. Physically, this means that the small-scale veloc
fluctuations take energy from the large-scales motions~direct
energy cascade from large-to-small structures! at d.dc ,
while at d,dc they excite the large-scale motions~spend
their energy! giving rise to the inverse energy cascade. F
e54 the critical dimensionalitydc'2.56. The correct value
of dc is not too important: what is crucial for the theo
presented below is that the critical dimensionality, at wh
the flux changes its sign, exists. It will be shown below th
d2dc→0 is a small parameter of the theory enabling one
calculate an expression for the dissipation anomaly in a fo
resembling the Kolmogorov refined similarity hypothesis.

Since in 2D the momentsS0,2n show Kolmogorov scaling,
the Gaussian statistics of transverse velocity differences
not correspond to the weak coupling limit. This problem w
considered in Ref.@11# where, following Polyakov@12#, the
equation for the generating function for the problem of t
Navier-Stokes turbulence was introduced. An unusual s
metry of this equation enabled one to show that the solu
was consistent with both Kolmogorov scaling and Gauss
statistics. In this work a more detailed theory of tw
dimensional turbulence is presented and the generalizatio
three-dimensional flows is considered. The main result of
paper is a model demonstrating how the deviations from
‘‘normal scaling’’ and Gaussian statistics appear in 3D wh
the strength of the dissipation term deviates from zero
the ‘‘scale’’ parametere0512r /L deviate from zero.
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This paper is organized as follows. In Sec. II the equat
for the generating function, derived in@11#, is introduced.
Some exact relations between velocity structure functio
following from this equation, are derived in Sec. III. Th
connection between scaling exponents of the moments
velocity differences and their amplitudes is established
Sec. IV. The mean-field derivation of the pressure term
given in Sec. V which is used to obtain a Gaussian proba
ity density function~PDF! in the two-dimensional flow in
Sec. VI. In Sec. VII the small parameter of the theory
identified and used to derive the expression for the diss
tion contributions to the equation for the PDF. Section V
is devoted to a solution of the equation and a demonstra
of how anomalous scaling and deviations from Gaussian
tistics emerge from the theory. Conclusive remarks are p
sented in Sec. IX.

II. EQUATION FOR THE GENERATING FUNCTION

The equations of motion are~densityr[1)

] tv i1v j] jv i52] i p1n¹2v i1 f i , ] iv i50 ~1!

wheref is a forcing function responsible for the kinetic e
ergy production and in a statistically steady state the m
pumping rateP5f•v. In what follows we will be mainly
interested in the probability density function of the two-po
velocity differenceU5u(x8)2u(x)[Du. The generating
function isZ5^exp(l•U)&. The equation for the generatin
function of velocity differences corresponding to Eq.~1! is

]Z

]t
1

]2Z

]lm]r m
5I f1I p1D, ~2!

with

I f5^l•“fel•Du&, ~3!

I p52l•^el•DuD~¹p!&[2l•^el•U@“2p~x2!2“1p~x1!#&

~4!

and

D5nl•^@“2
2v~x2!2“1

2v~x1!#el•U&. ~5!

The most interesting and surprising feature of Eq.~2! is the
fact that, unlike in the problem of Burgers turbulence@12#,
the advective contributions are represented here in a clo
form. This means that the theory, developed below, is f
from the troubles related to the Galilean invariance, haunt
all schemes, based on renormalized perturbation expans
in powers of the Reynolds number. To completely close
problem the expressions forI p andD are needed. Equation
~2! and ~3! formulate the turbulence theory in terms
‘‘only’’ two unknowns I p and D. The Kolmogorov refined
similarity hypothesis stating that (Du)35fEr r , wheref is a
scale-independent random process andEr is the dissipation
rate averaged over a ball of radiusr around pointx, can be a
promising starting point to a closure for the dissipation te
D. This will be done below. The pressure term in Eqs.~2!
and~3! is also of a very specific and rather limited nature:
7-2
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we have to know is the correlation function
^UiU j¯UmD¹p&. Thus, the definite targets needed f
derivation of the closed equation forZ functions are well
defined.

The generating function can depend only on three v
ables:h15r ; h25l•r /r[l cos(u); h35Al22h2

2; and

Zt1F]h1
]h2

1
d21

r
]h2

1
h3

r
]h2

]h3
1

~22d!h2

rh3
]h3

2
h2

r
]h3

2 GZ5I f1I p1D. ~6!

Below we will often use]h i
[] i . The functionsI p , I f , and

D are easily extracted from the above definitions. Let
denoteDu[U andDv[V. In the new variables the gene
ating function can be represented as

Z5^eh2Du1h3Dv&[^eh2U1h3V&

with the mean dissipation rateE defined by n(]xu)2

5(1/d)E. Any correlation function is thus

Sn,m[^UnVm&5]2
n]3

mZ~h25h350,r !.

III. RELATIONS BETWEEN MOMENTS OF VELOCITY
DIFFERENCE

Let us discuss some direct consequences of Eqs.~1!–~6!.
The Navier-Stokes equations are invariant under transfor
tion: v→2v and y→2y. That is why^@]yp(0)2]yp(r )#
3(Dv)m&Þ0 if m52n11 with n.1 and is equal to zero if
m52n. It is also clear from the symmetry that^]xpU2n& is
an odd function ofr. It follows from the Navier-Stokes equa
tions that n^(¹2U)(Du)2n&50 when n→0 and
^(¹2V)V2n&50. The first relation is proved in the following
way: a single-point correlation function

^~¹2u!u2n&50,

due to the symmetry of the problem. Thus^¹2u(Du)2n&
}r ur ug with 11g.0, meaning that multiplied byn→0, this
expression tends to zero. This result is a consequence
simple observation that the above expression can be re
sented as the sum of single-point contributions~equal to
zero! and the functions ofr with the displacementr in the
inertial range. This proves the above relation.

Multiplying Eq. ~6! by h3 and applying]3]2
2n21 to the

resulting equation gives ash25h3→0

]S2n,0

]r
1

d21

r
S2n,02

~d21!~2n21!

r
S2n22,2

52~2n21!^Dpx~Du!2n22&

1P@12cos~r / l f !#an,dS2n23,0, ~7!

wherean,d52(2n21)(2n22)/d. Due to the symmetry of
the problem dissipation terms do not contribute to this re
tion.
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In a three-dimensional case~3D! the small-scale (r / l f
!1) contribution to the right side of Eq.~7! is O(r 2) and
can be neglected. It is, however,O(1) in two-dimensional
turbulence in the inverse cascade range wherer / l f@1. For
n51 Eq. ~7! gives a well-known incompressibility relatio
@13,14#

]S2,0

]r
1

d21

r
S2,05

d21

r
S0,2. ~8!

Multiplying Eq. ~6! by h3 with subsequent]3]2
2 leads, after

settingh25h350 asn→0, to

]S3,0

]r
1

d21

r
S3,022

d21

r
S1,25~21!d

4

d
P, ~9!

where d52 and 3. Applying]3
3h3 to Eq. ~6! gives, asn

→0,

]S1,2

]r
1

d11

r
S1,25~21!d

4

d
P. ~10!

Substituting this into Eq.~9! yields a well-known Kolmog-
orov relation

S3,0[~Du!35~21!d
12

d~d12!
Pr. ~11!

For 2n54 the relation~7! reads

]S4,0

]r
1

d21

r
S4,05

3~d21!

r
S2,223^~Dpx!~Du!2&.

This relation is correct in the case of incompressible a
isotropic turbulence whenn→0, including the limit r→L
where velocity fluctuations obey close-to-Gaussian statis
~see below!. There, sincê¹p&50, the pressure contribution
is negligible. In the dissipation range

^Dpx~du!2&'r 3^pxxux
2&!r 3^ux

4&

since^pxx&50. This leads us to the conclusion that the pre
sure contribution, at least numerically, is small in the inert
range, too. This gives

]S4,0

]r
1

d21

r
S4,0'

3~d21!

r
S2,2. ~12!

In two-dimensional turbulence (d52), where theO(d22)
contribution to Eq.~6! is zero, one can neglect the dissip
tion termD in the inverse cascade range and derive

]S1,2n

]r
1

112n

r
S1,2n5n~2n21!PS0,2n22

22n^Pyv~Dv !2n21&, ~13!

where Pyv[]yp(x1r )2]yp(x). Another interesting rela-
tion, valid in 2D is obtained from Eq.~6! by differentiating
once overh2 and 2n times overh3 ,
7-3
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]S2,2n

]r
1

112n

r
S2,2n5

S0,2n12

r
22n^PyvDu~Dv !2n21&

1n~2n21!PS1,2n22 . ~14!

In the direct cascade range, where the forcing contributio
O(r 2)→0, the relation~14! for an arbitrary dimensionalityd
reads

]S2,2n

]r
1

d2112n

r
S2,2n5

2n1d21

2n11

S0,2n12

r

22n^PyvDu~Dv !2n21&.

~15!

We would like to stress the difference between Eq.~13! and
Eqs. ~14! and ~15!. The relation~13! is for the odd-order
structure functions with the dissipation term irrelevant in 2
only. On the other hand, the expressions~14! and ~15! in-
volve even-order moments with the dissipation contributio
equal to zero whenn→0 for an arbitrary space dimension
ality. The relations derived in this section are of importan
since they enable one to obtain information about press
velocity correlation functions in turbulent flows by expe
mentally measuring the combinations of velocity structu
functions. Untill recently this information was unavailable

Now, let us multiply Eq.~6! by h3 , differentiate once
over h2 and three times overh3 . This gives

]S2,2

]r
1

d11

r
S2,25

d11

3r
S0,422PyvDuDv. ~16!

This relation is correct sincen¹2vDuDv5n¹2u(Dv)250
whenn→0.

2D simulations of Boffetta, Celani, and Vergassola. To
achieve a true steady state these authors@7# conducted a
series of very accurate simulations of the problem~1! with
the large-scale dissipation termDL52av in the right side
~6!. The moments of transverse velocity differences, repo
in this paper (n>2), were very close to their Gaussian va
ues. It is clear that this term introduces2alm(]Z/]lm) into
the right side of Eq.~6! which is small in the inertial range
where the nonlinearity is large. One has to be careful thou
with the dangerous intervalDv→0 where the linear term is
not small. We expect that the negative-order structure fu
tions with 21,n,0 strongly depend on the functiona
shape of the otherwise irrelevant large-scale dissipation te
The same can be predicted for various conditional expe
tion values of dynamical variables, like pressure gradie
and dissipation terms, for the fixed values ofDvDu: near the
origin whereDv and Du are very small, the artificially in-
troduced linear contributions to the Navier-Stokes equati
dominates, producing large and nonuniversal deviations f
the universal functions characterizing inertial range. For
ample, with the addition of the linear dissipation, relati
~14! reads
02630
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]S2,2n

]r
1

112n

r
S2,2n5

S0,2n12

r
2~2n11!aS1,2n

22n^PyvDu~Dv !2n21&

1n~2n21!PS1,2n22 , ~17!

modifying the balance~pressure contribution! in the range of
the small productDuDv or r /L'1. In the interval where
DuDv is not small (r→0), the linear terms are small an
can be neglected. The results obtained in this section can
be derived with

Z5eAd21h3V1h2U ~18!

with the properly defined moments ofV andU.

IV. ASYMPTOTIC VALUES OF EXPONENTS
IN THREE-DIMENSIONAL FLOWS

In the case of intermittent turbulenceSm,n5Am,nr jm,n

with the ‘‘anomalous’’ scaling exponents which cannot
obtained on dimensional grounds. We can see that in
inertial range of a three-dimensional flow (r / l f!1) the right
side of Eq.~7! is negligible and, as a result, forn.1, j2n,0
5j2n22,2[j2n,2n/3. Substituting this into Eq.~7! gives
immediately

j2n5~d21!F ~2n21!
A2n22,2

A2n,0
21G . ~19!

Let us introduce the probability density functionsP(U) and
q(VuU) via

S2n,05U2n5E P~U !U2ndU ~20!

and

S2n22,25U2n22V25E P~U !U2n22V2q~VuU !dUdV,

~21!

whereq(VuU) is the conditional PDF ofV for a fixed value
of U. It is clear thatq(VuU)5q(2V,U), so that all odd-
order moments ofV are equal to zero. This expression can
rewritten as

S2n22,25U2n22V25E P~U !U2n22Q2~U !dU, ~22!

whereQ2 is a conditional expectation value ofV2 for a fixed
value ofU,

Q2~U !5E V2q~VuU !dV. ~23!

It follows from Eq.~19! that the linear limitj2n}n(n→`) is
achieved only when the amplitudesA2n,0'A2n22,2 which is
possible only ifQ2}U2. This seems rather improbable in th
limit U→`(n→`). As a result, the linear regimej2n}n is
7-4
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equally improbable. Saturation of exponentsj2n→j`

5const asn→` is possible on a rather wide class of pro
ability densities. For example,

P~U !→2A
1

U

]

]U
P~U !Q2~U ! ~24!

whereA.0 is a constant. Then,

S2n,05~2n21!AE P~U !Q2~U !U2n22dU

5~2n21!AS2n22,2. ~25!

Substituting this result into the expression forj2n givesj2n
→(d21)(A21)5const. The relation ~24! defines the
large-U asymptotics of the PDFP(U) in terms ofQ2(U),

P~U !}
1

Q2~U !
expS 2AEU udu

Q2~u! D . ~26!

If Q2(U)→Ub then, assuming the existence of all momen
it follows from Eq. ~25! that b,2. The ‘‘log-normal’’ PDF
P(U) corresponds toQ2(U)}U2/2 log(U). The expression
~24! also gives in the limit of largen

S2n11,05U2n1152nAV2U2n2152nAS2n21,2. ~27!

V. PRESSURE CONTRIBUTIONS

Due to the symmetries of the Navier-Stokes equatio
neither pressure nor dissipation terms contributed to the
pressions~7!–~12!. To proceed further we have to evalua
I p andD. First of all we see from Eq.~12! thatj4,05j2,2. Let
us assume that in the inertial rangeS4,05A4,0r

j4,0, S0,4
5A0,4r

j0,4, and S2,25A2,2r
j2,2. Then, it is clear from Eqs

~12! and~16! that neglecting the pressure contribution to E
~16! givesj4,05j0,4.

d52. It will be shown in Sec. VI that in 2D the even
order moments of velocity differences are very close to
Gaussian ones and all exponents are close to theK41 values
jn5n/3. Then,A4,053A2,0

2 andA0,453A0,2
2 . It follows from

Eq. ~12! that A2,257/9A4,0. From Eq.~18! when d52 we
have the amplitudes 5/3A2,05A0,2, we conclude that withou
the pressure contribution, Eqs.~12! and ~16! are incompat-
ible.

Following @15# we introduce a conditional expectatio
value of the pressure gradient difference for a fixed value
Du, Dv, andr,

^]yp~x1r !2]yp~x!uDu,Dv,r &'(
m,n

km,n~r !~Du!m~Dv !n,

~28!

where the functionskm,n(r ) ensure proper dimensionality o
the corresponding correlation functions. The above exp
sion explicitly assumes the existence of an expansion of
conditional expectation value~28!. In general, this may no
be true due to various singularities such as the ones arisin
the dissipation contributions~see below!. Since the pressure
02630
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term involves only one spacial derivative, the ultraviolet s
gularity cannot appear. The infrared singularity is not the
at least in 2D where the integral scale is time dependent~see
below!. Keeping only the first two terms of the expansio
~28! produces a model for the pressure contributions

^]yp~x1r !2]yp~x!uDyDv&'2h
DuDv

r
2b

Dv
~Pr !2/3.

~29!

Since in an incompressible and homogeneous flowDuPxu

5DvPyv50, the coefficientsh andb are related as

2hS1,25bS0,2~Pr !1/3. ~30!

Limiting the expansion of a conditional expectation value
the first terms resembles Landau’s theory of critical pheno
ena, well describing experimental data in a certain range
parameters variation. We will show below that in the case
turbulence this approximation gives the results which are
agreement with the data. This may be a consequence o
fact thatA0,4'A4,0'A2,25O(1).
With jn5n/3 it follows from Eqs.~7!, ~13!–~15!, and ~29!
that whend52 andn→`,

S 2n~423h!

3
11D S1,2n

r
5n~2n21!PS0,2n221b

2nS0,2n

~Pr !2/3

and

S 2n~423h!

3
11D S2,2n

r
5

S0,2n12

r
1n~2n21!PS1,2n22

1b
2nS1,2n

~Pr !2/3 .

In the limit n→`, by assuming thatS1,2n'nS1,2n22 , one
derives readily

PrnS0,2n22'
S2,2n12

Prn
'

1

Prn2 S0,2n14 , ~31!

which is consistent with the Gaussian PDFP(Dv) as Dv
→`. Thus, the relation~29! implies the Gaussian tails of th
probability density. It is clear that due to the finite ener
flux and relations~10! and~11!, two-dimensional turbulence
cannot be a Gaussian process. All the relation~31! can tell us
is that the even-order moments withn@1, described by Eq.
~31!, can be close to the Gaussian values. It will be sho
below that transverse velocity differences, not directly
volved in the interscale energy transfer, can obey Gaus
statistics. It is clear from Eq.~17! that the model~29! for the
pressure contributions is wrong when the linear dissipat
terms are added to the Navier-Stokes equations. In the l
of small DuDv the balance is achieved when

^PyvuDu,Dv,r &'2h
DuDv

r
2S a1

b

~Pr !2/3DDv,

which differs from Eq.~29! in the range of smallDuDv.
7-5
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Three dimensional. In the intermittent three-dimensiona
turbulencej2n,j2n11 . This produces strong restrictions o
the structure of the pressure contributions to Eq.~6!. Let us
assume thatj2n,05j2,2n225j2n22,2. Then, it is clear from
Eq. ~15! that the first term of expansion~28! has all right
properties. The relation~15!, involving the r derivatives, is
valid for an arbitrary value ofn and that is why any addi
tional term of expansion~28! must not only depend on
proper power ofn but the functionskm,n(r ) must also reflect
nontrivial dimensionalities caused by the anomalous sca
exponentsjn . Since original Navier-Stokes equations do n
involve noninteger powers ofr, this possibility seems quite
bizzarre. In what follows we will adopt the pressure mod
~29! in the three-dimensional case also.

VI. TWO-DIMENSIONAL TURBULENCE

Now we are interested in the case of the two-dimensio
turbulence in the inverse cascade range. If a two-dimensi
~2D! fluid is stirred by a random~or nonrandom! forcing
acting on a scalel f51/kf , the produced energy is spent o
the creation of the large-scale (l . l f) flow which cannot be
dissipated in the limit of a large Reynolds number asn→0.
This is a direct and most important consequence of an a
tional, entrophy conservation law, characteristic of tw
dimensional hydrodynamics@16#. As a result, the dissipation
term is irrelevant in the inverse cascade range and we
D50 in Eq. ~6! and hope that in two dimensions the situ
tion is greatly simplified. This hope is supported by rece
numerical and physical experiments@4–7# showing that as
long as the integral scaleLi}t3/2 is much smaller than the
size of the system, the velocity field at the scalesLi@ l @ l f is
a stationary close-to-Gaussian process characterized by
structure functions with the Kolmogorov exponentsjn
5n/3. In a recent paper Boffetta, Celani, and Vergassola@7#
reported the results of very accurate numerical simulation
two-dimensional turbulence generated by a random fo
No deviations from Gaussian statistics of transverse velo
differences as well as from the Kolmogorov scalingjn
5n/3 were detected.

The pressure gradient]yp5]y] i] j]
22Dv iDv j and the

difficulty in calculating I p is in the integral over the entire
space defined by the inverse Laplacian]22. The huge sim-
plification, valid in 2D, comes from the fact that all contr
butions to the left side of Eq.~6! as well asI f are indepen-
dent on time. This means that the integrals involved in
pressure terms cannot be infrared divergent since in a t
dimensional flow L5L(t)}t3/2. We also have thatI p
→a2I p whenU,V→aU;aV. Based on this and taking int
account that̂ (Dv)2n11(ux

21vy
21uyvx)&50 we, in the limit

h2→0, adopt a low-order model~29! giving

I p5Fh
]2

]h2]h3
1b

h3

~Pr !2/3]3GZ~h250,h3 ,r !. ~32!

In two dimensions the relation~32! combined with Eq.~6! in
the limit h2→0 gives a closed equation for the moments
transverse velocity differences in 2D turbulence.
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Substituting Eqs.~32! and~29! into Eq. ~6! and, based on
Eqs.~9!–~11!, seeking a solution ash2→0 as

Z~h2 ,h3 ,r !'Z3~h3 ,r !w~h2r 1/3,h3!

'Z3~h3 ,r !exp@ 1
2 A2,0~h2Pr1/3!2#

3S 11 1
2 A1,2h3

2h2~Pr !1
h2

3

4
1¯ D ,

~33!

where (A1,251/2), gives

F] r1
1

r
1

12h

r
h3]3G A1,2Pr

2
h3

2Z352Ph3
2Z31

bh3

r 2/3 ]3Z3 .

~34!

SettingZ35Z3(h3r 1/3)[Z3(X) andh54/3 one derives, us-
ing the relation~30! (b522/3A0,2),

2A0,2XZ35]XZ3 ,

corresponding to a Gaussian solution with the correct wi
A0,2. This fact serves as a consistency check that the Ga
ian is a solution for the PDF of transverse velocity diffe
ences. Equation~34! defines a probability density functio
corresponding to the finite momentsS2m,2n(r ) only whenh
54/3. This situation resembles Polyakov’s theory of Burg
turbulence@12# reduced to an eigenvalue problem with
single eigenvalue corresponding to the PDF which is posi
in the entire interval.

Having these exact results and keeping in mind Eq.~33!
one can integrate the equation overh2 from 2 i` to 0 to
obtain

]Z3

]r
13~12h2b!

h3

r

]Z3

]h3
5

2P

~Pr !1/3h3
2Z3 ~35!

which valid as long as

~h3r 1/3!2

8A2,0
2 !1.

This constraint is an artifact of an approximate relation~33!.
As will be shown below Eq.~35! gives an exact Gaussia
solution and thus is valid beyond the above interval. T
result is obtained by choosing the integration functi
C(h3 ,r ) to compensate theO(Z/r ) term violating the nor-
malizability constraintZ(0,0,r )51. The solution to Eq.~35!
is

Z35exp@gh3
2~Pr !2/3# ~36!

with the parameterg53/@3(12h2b)11#}A0,2 defining
the width of the Gaussian.

The first-order differential equation~35! for the generat-
ing function differences implies the underlying linear Lang
vin dynamics of transverse velocity differences. It is impo
tant that this equation in nonlocal in physical space but lo
7-6
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in the Fourier one. The effective forcing, corresponding
the right-side of Eq.~35!, is nonlocal and solution dependen

To evaluate the single-point probability density that c
responds to velocity differences in the limit of large displac
mentsr, we notice that the energy flux is not equal to ze
only at r !L. At the distancesr>L(t) the zero value of the
energy flux and symmetrization of the probability dens
@P(Du,L)5P(2Du,L)# can be achieved only when th
pressure contribution to Eq.~6! compensates the advectiv
terms. As a result, sinceD50, we have

Zt52Ph3
2Z.

Seeking a solution asZ5Z(h3At)[Z@h3v rms(t)# gives a
Gaussian result

Z5eh3
2urms

2
~ t !.

A similar outcome is obtained for the case investigated
@7#. When turbulence is stabilized at the large scales by
artificially introduced friction, the resulting equation is

h3]3Z52Ph3
2Z,

which also leads to the Gaussian PDF. To conclude this
tion we would like to discuss the physical meaning of t
integral scaleL. The integral scale of turbulence is a scale
which the flux decreases to zero@18# and at whichS3,0(L)
50.

VII. SMALL PARAMETER IN TURBULENCE THEORY
IN THREE DIMENSIONS

Three-dimensional turbulence is a notoriously diffic
problem due to the absence of the small parameter. This
be illustrated by the example of a coarse-graining proced
which was extremely successful in engineering turbule
simulations. Consider the wave numberk in the inertial
range. Let us denotev,(q) the Fourier components of th
velocity field with all modesv,(q)50 when q.k. The
modesv(q) with q.k are denoted asv.(q). The coarse-
grained field in the physical space is defined then as

vr~x,t !5E
k,1/r

v~k!eik•xd3k.

The equation of motion forv i
,(k) in the Fourier space re

sembles the Navier-Stokes equation with effective visco
@10,17#

n~k!'S ~d2dc!~d1 1
2 !

3.2d~d12!
D 1/3

E1/3k24/3

with dc'2.56 plus high-order nonlinearities. The parame
3.2 in the above relation, evaluated atd53, is in fact a weak
function of space dimensionality andE5P5O(1). This ex-
pression is derived assuming close-to-Gaussian statistic
the small-scale turbulence with
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v i~k,v!v j~k8,v8!}
k2d

2 iv1n~k!k2 d~k1k8!d~v1v8!,

which is accurate whend2dc→0 @10# ~see below!.
In the physical space the effective viscosity of the coar

grained field

n r'~d2dc!
1/3N~Er 4!1/3'v r

2t r

defines the relaxation timet r , which is a characteristic time
of interaction of the fieldv r with the eliminated modes act
ing on the scalesl ,r .
The difficulty of the theory is in the higher nonlinearities

~v r¹!nt r
n21v r ,

and the dimensionless expansion parameter

t r

u r
'¹ rv rt r'

t rv r

r

is nothing but the ratio of the relaxation timet r , strongly
influenced by the pressure gradients contributions, to
translational timeu r , characterizing the tendency of th
‘‘large-scale’’ longitudinal velocity fluctuation at the scaler
to form a small-scale ‘‘shock’’~atypical in the absence o
pressure!. In both 2D and 3D these times are of the sam
order and that is why trancation of the expansion is a v
difficult problem.

This is not so in the vicinity ofd5dc . Let us assume tha
the theory can be analytically continued to the noninte
dimensions@9#. Then, since the energy flux, prescribed
the power of the forcingP5O(1), wehave

E'
]

]r
^Du~Dv !2&'

]

]r
^~Du!3&'n K S ]v ri

]r j
D 2L 5O~1!.

This means that

v r ,rms'~d2dc!
21/6~Er !1/3,

the dissipation wave numberkd'(d2dc)
1/4(E/n0

3)1/4 and, as
a consequence,

t r

u r
'~d2dc!

1/2,

which will serve as a small parameter of the theory whend
2dc→01.

These relations tell us that the turbulent intensity grows
infinity asd2dc→0 where the energy flux changes its sig
The time needed to reach the steady state is estimated e

T'~d2dc!
21/3E21/3r 2/3,

after which a close-to-Kolmogorov spectrum is expec
both above and belowdc . Thus, atd5dc the the flow is
unsteady.
7-7



es

it

e

u
e
wh
he
er

ca

n

la
ll
d

ie

t-
h
y

er a

c-

-
ot
olu-

re

-

VICTOR YAKHOT PHYSICAL REVIEW E 63 026307
The above results enable one to derive a plausable
mate for the dissipation termD. It is clear from the Navier-
Stokes equations that

E52 1
2 ] iv iv j

22 1
2 ] tv

22] iv i p.

The coarsed-grained expression in the low-frequency lim

E'2
1

2

]

]r i
v ri v r j

2 @11O~d2dc!#. ~37!

To arrive at an expression forD we assumev r'Dv, which
leads to an expression very similar to Kolmogorov’s refin
similarity hypothesis.

VIII. THREE-DIMENSIONAL FLOW

The most important feature of two-dimensional turb
lence, considered in a previous section, is the irrelevanc
the dissipation processes in the inverse cascade range
d,dc . It is this irrelevance that was responsible for t
Gaussian probability density of transverse velocity diff
ences.

The model for the dissipation contributionD in the limit
h2→0 is readily evaluated from Eq.~37!. We would like to
keep at least some information aboutDv and the expression
must be invariant under the transformationv→2v andx→
2x. In addition, the expression must be local in the physi
space. Based on these considerations we have

Ev'c~d!DuDv
]Dv
]r

,

whereEv is a dissipation rate of the ‘‘v contribution to ki-
netic energy’’ Kv5(1/2)v2. The locality of this model is
clear since] rDv5]1v(x1)1]2v(x2). The problem is in the
evaluation of the coefficientc(d) since, in principle, it can
be singular atd5dc . Indeed, it is clear that the dissipatio
term is zero atd<dc . However, the pointd5dc that sepa-
rates the inverse and direct cascade ranges is a singu
due to infinitely large amplitudes of velocity fluctuations. A
we can say at this point is that the PDF can be represente
a sum of even and odd functions ofDv. The symmetric part
has a width growing withd2dc→01, while the width of
the odd one isO(1). Thebehavior ofc(d) in the vicinity of
dc is not clear. We feel that it isO(1) at d.dc and zero at
d<dc . Thus, we have

D'c~d!h3]h2
]h3

] rZ'c~d!h3
2K DuDv

]Dv
]r

eh2Du1h3DvL
1O~] r]h2

Z!. ~38!

This expression obeys the basic symmetries of the Nav
Stokes equation.

The last term in the right-hand side of Eq.~38! simply
modifies the coefficient in front of the first term in the lef
hand side of Eq.~6! and does not generate anything new. T
expression~38! resembles Kolmogorov’s refined similarit
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hypothesis, connecting the dissipation rate, averaged ov
region of radiusr, with (Du)3. Thus, in the limith2→0

F ]h1
]h2

1
2

r
]h2

1~11h!
h3

r

]2

]h2
]h3

1c~d!h3]h2
]h3

] r GZ~h250,h3 ,r !

5~h3
21h2

2!
2P

3
@12cos~kfr !#Z2b

h3

r 2/3]3Z. ~39!

The d2dc.0 counterpart of Eq.~35! is

F]h1
1~11h1b!

h3

r

]

]h3
1c~d!h3]h3

] r GZ~h250,h3 ,r !

5a
2P

3

12cos~kfr !

r 1/3 h3
2Z~0,h3 ,r !, ~40!

with C(h3) chosen in such a way that the generating fun
tion Z(0,0,r )51. We consider two limiting cases.

Small-scale dynamics

Inverse Laplace transform of Eq.~40! without the right
side gives an equation for the PDFP(Dv,r )[P(V,r ),

]P

]r
1

113b

3r

]

]V
VP2b

]

]V
V

]P

]r
50, ~41!

whereb}c(d). SinceS0,350, the coefficients in Eq.~41! are
chosen to gives0,35uDvu35a3Pr with an undetermined am
plitude a3 . This is an assumption of the present theory, n
based on rigorous theoretical considerations. Seeking a s
tion in the formS0,n5^(Dv)n&.}r jn gives

jn5
113b

3~11bn!
n'

1.15

3~110.05n!
n, ~42!

which was derived in@18# together withb'0.05. It follows
from Eq. ~41! that P(0,r )}r 2k, where k5(113b)/3(1
2b)'0.4 for b50.05. Very often the experimental data a
presented asP(X,r ), whereX5V/r m with 2m5j2'0.696
for b50.05. This givesP(X50,r )}r 2k1m'r 20.052 com-
pared with the experimental data by Sreenivasan@19#: 2k
1m'20.06.

Let us write P(V,r )5r 2kF(V/r k,r )5r 2kF(Y,r ), so
that F obeys the following equation:

~12b!r
]F

]r
1bk

]

]Y
Y2

]F

]Y
2bYr

]2F

]Y]r
50. ~43!

Next, changing the variables again to2`,y5Ln(Y)
,`, substituting this into Eq.~43!, and evaluating the Fou
rier transform of the resulting equation, gives

~12b!r
]F

]r
1bk~ ik2k2!F2 ikbr

]F

]r
50 ~44!
7-8
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with the result F}r g(k), where g(k)5bk@(2 ik1k2)/(1
2b2 ibk)#Ln(r /L) with r /L!1. We have to evaluate th
inverse Fourier transform

F5E
2`

`

dk e2 ikyeg~k! ~45!

in the limit y5O(1) andr→0 so thatLn(r /L)→2`. The
integral can be calculated exactly. However, the result
expression is very involved. Expanding the denominator
g(k) gives

F5E
2`

`

dk expF2 ikS y1
bk@Ln~r !#

12b D G
3expS 2

bk~11b!uLn~r !u
~12b!

k2D ~46!

and

F}
1

AV~r !
expS 2

@Ln~j!#2

4V D ~47!

with j5V/r k/(12b) and V(r )54bk@(11b)/(1
2b)#uLn(r /L)u.

To understand the range of validity of this expression,
us evaluatê Vn& using the expression~47! for the PDF.
Simple integration and neglectingO(b2) contributions
gives:^Vn&}r an with an5(113b)@n2b(n212)#/3. Com-
paring this relation with the exact result~42! we conclude
that the expression for the PDF, calculated above, is vali
the rangen@1 andbn!1. The properties of the PDF in th
range 3<j<15 are demonstrated in Fig. 1 forr /L
50.1,0.01,0.001. The log-normal distribution~47! is valid in
a certain~wide but limited! range of theV variation. It is
clear from Eq. ~42! that neglecting the dissipation term
@c(d2dc)}b50# leads tojn5n/3, i.e., the disappearanc
of anomalous scaling of moments of velocity differenc
This result agrees with the well-developed phenomenolo
attributing intermittency to the dissipation rate fluctuation
the stronger the fluctuations, the smaller the fraction of
total space they occupy@8,14#. To the best of our knowledge

FIG. 1. Ln@P(j,r )#. From bottom to top: r /L50.1, 0.01, and
0.001, respectively.
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this is the first work leading to the multifractal distribution o
velocity differences as a result of approximations made
rectly on the Navier-Stokes equations.

To investigate the probability densityP(Y,r ) in the limit
Y→0 we introduce an expansion

F~Y,r !5(
n

CnY2nf 2n~r !. ~48!

Substituting this into Eq.~44! gives

f 2n}S r

L D 2bk2n~2n21!/@12b~11n!#

. ~49!

It is seen from Eqs.~48! and~49! that the PDF starts bendin
from the log-normal slope~47! toward ]YF(Y,r )50 at Y
50 at

Y,S r

L D bk /~122b!

. ~50!

This inequality shows that asr→0 the PDF develops a nar
row cusp at the originY50. If the probability density is
plotted in the dimensionless variableX, the bending starts a
X'r 0.07. This value was calculated, as above, withb
50.05.

Large-scale limit: r ÕLÉ1

Now let us investigate the large-scale limitr /L→1. Real-
izing that b can be anO(1) constant, for illustration pur-
poses we will investigate the large-scale limit pretending t
b(d)→0 asd→dc . This is also useful since the estimate
value ofb'0.05 atd53 is numerically small. In this limit
the right-hand side of Eq.~41! is O(h3

2Z) and cannot be
neglected. Repeating the procedure leads to an equation

]P

]r
1

113b

3r

]

]V
VP2b

]

]V
V

]P

]r
5a

P

~Pr !1/3

]2Z

]V2 ,

~51!

wherea is a proportionality coefficient andr'L. As one can
see from this equation in the limit of smallb the solution to
this equation approaches Gaussian. It is also clear tha
any finiteb, the tails of the PDF are strongly non-Gaussi
when

bY2@1. ~52!

This estimate means that, according to the theory prese
above, the perturbative treatment of deviations from
mean-field Gaussian theory is possible but it involves t
parameters: the ratioe0512r /L!1 andb!1. The fact that
the ‘‘real-life’’ b'1/20 may explain why the experimentall
observed PDF of the large-scale (e!1) velocity fluctuations
was so close to the Gaussian~see@8# and references therein!.
It is also seen from Eq.~52! that at (r /L)2'b'0.05 the
PDF is dominated by a Gaussian central part.
7-9
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IX. CONCLUSIONS

Equation~6! formulates the theory of turbulence in term
of ‘‘only’’ two unknowns: pressure and dissipation termsI p
and D, respectively. It provides a mathematical testi
ground for various analytic expressions and models obta
from numerical simulations.

Armed with the experimental and numerical data, su
porting Gaussian statistics of transverse velocity differen
in two-dimensional flows, we showed that the mean-fi
approximation@the lowest-order term of the expansion~28!#
for the pressure contributions~29! leads to both Kolmogorov
scaling and Gaussian statistics of transverse velocity dif
ences. In addition, Eq.~6! shows that the single-point PDF’
in 2D turbulence are Gaussian. It is to be stressed that
turbulence cannot be a Gaussian process and probability
sity P(Du,Dv,r )5 is not a Gaussian. It is only the PD
P(Dv,r )5*P(Du,Dv,r )dDu which is a Gaussian. This
statement violates no dynamic constraints. If this is so, t
transverse velocity differences are a good candidate to s
as an ‘‘order parameter’’ of turbulence theory.

One of the most interesting outcomes of the pres
theory is the discovery of the existence of the two time sca
in the system which are very different in the vicinity ofd
5dc . This difference enables one to coarse grain the Nav
Stokes equations and neglect all high-order nonlineari
generated by the procedure. Using this result the mode
for the dissipation termD was derived.

The as yet unresolved ambiguity of this model is its b
havior asd→dc . If the transition from 3D to the noninter
mittent state atd,dc is smooth, thenb→0 and the resulting
equation shows the onset of both anomalous scaling and
Gaussian statistics. The transition can be singular, howe
right at d.dc the coefficientb can becomeO(1) and a
weakly intermittent state and weak coupling limit do n
exist. In this case, due to the existence of the small par
eter, enabling the evaluation of the dissipation expressionD,
the theory nonperturbatively predicts both the shape of
PDF and scaling exponents provided the small param
S3,0/(S2,0)

3/2→0 asd→dc . This result is possible sinceD
5D01O(d2dc) avd even in the limitd→dc , the model
D5O(1). At d2dc,0, D50, leading to the Gaussian PD
of transverse velocity differences. Experimental and num
cal investigation of hydrodynamics in a noninteger space
mension is impossible. However, it was demonstrated
Jensen@20# that a force-driven shell model yields the chan
ing sign of the energy flux upon variation of a leading p
rameter. The numerical solution at a critical point~zero flux!
demonstrated an unsteady state with the growing total en
and the energy spectrum concentrated in the vicinity ofkf .
,

Ib
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The calculation also gave the Kolmogorov energy spectr
at ‘‘d.dc’’ with a growing Kolmogorov constant asd
→dc . It is not yet clear how the eddy viscosity approxim
tion works for the shell model, but, since theO(1) energy
flux is fixed by the forcing function, the growth of kineti
energy must be related to a relaxation timet r→0 at d5dc
and a corresponding small parameter. This result also sh
that the phenomenon is very robust: all one needs is a p
at which the energy cascade changes its direction. The re
of the shell model investigation will be published elsewhe
@21#.

Expression~47! is similar to the one obtained in a ground
breaking paper by Polyakov on the scale invariance of str
interactions, where the multifractal scaling and the PDF w
analytically derived@22,23#. In the review paper@23# Polya-
kov noticed that the exact result can be simply reproduced
considering a cascade process with a heavy stream~particle!
transformed into lighter streams at each step of the casc
~fission!. Due to the relativistic effects the higher the ener
of the particle, the smaller the angle of a cone, accessibl
the fragments formed as a result of fission. Thus, the lar
the number of a cascade step, the smaller is the fractio
space occupied by the particles@23#.

The theory presented in this paper describes many exp
mental observations. Still, an understanding of the limits
validity of expression~29! is crucial for the final assessmen
of the theory. Relation~32! shows that Eq.~29! is consistent
with the Gaussian tails of the PDF. However, at the pres
stage we are unable to prove that Eq.~29! is the only expres-
sion leading to this result. The problem is that without e
perimental detection of at least some deviations from
Gaussian statistics of transverse velocity differences,
will not be able to understand the limits of validity of Eq
~29!. Given the state-of-the-art of numerical simulations, t
goal may not be that simple.
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